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Abstract  

 

This paper describes a full-field perturbation approach to scattering and reverberation in 

complicated environments, such as range-dependent stratified media and waveguides 

with rough interfaces. Each interface is treated as a superposition of deterministic large-

scale features (such as bathymetry changes) and random small-scale (comparable with 

the wavelength) roughness. Expressions for both reverberation field and average 

reverberation intensity in a general case of an arbitrary number of rough interfaces are 

obtained in a form, convenient for numerical simulations. In the case of long-range ocean 

reverberation, several approximations for these expressions are developed, relevant for 

various environmental scenarios and different types of interfaces, sea-surface, water-

sediment interface, buried sediment interfaces, and bottom basement. The results are 

presented in a simple form and provide a direct relationship of reverberation intensity 

with three critical characteristics defined at each interface: (1) local spectra of small-scale 

roughness, (2) local contrast of acoustic parameters, and (3) two-way full-field 

transmission intensity calculated taking into account only large-scale changes of the 

environment.  

 

Keywords: Reciprocity, integral equations, volume and roughness scattering, 

reverberation, range-dependent waveguides.  

 

PACS numbers: 43.30.Gv, 43.30.Hv 
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I. INTRODUCTION 

This paper develops a full-field model of reverberation in complicated 

environments, such as range-dependent stratified media and waveguides using a unified 

approach to volume and roughness scattering [1]. The approach was described in [1] in 

adequate detail only for the case of plane wave scattering from a heterogeneous fluid 

medium with rough interfaces plane-layered on the average. Such formulation usually 

appears in short-range bottom reverberation and direct path scenarios, where the 

description of acoustic bottom interaction is particularly built on conventional concept of 

scattering strength [2]. Using this concept assumes description of scattering strength as a 

function of grazing angles for incident and scattering waves, and therefore requires that 

incident waves be separated from the total field, which is not always possible, 

particularly in many cases relevant to long-range propagation and reverberation. A 

detailed discussion of this and other related issues can be found in [3], where it is 

suggested that other approaches, using full-field propagation and scattering models, are 

necessary to fully address the reverberation issues.  

This paper develops further a full-field version of the unified approach [1] and 

extends it to the problem of long-reverberation in a waveguide with various rough 

interfaces, including sea surface, water-seafloor interface, internal (buried) sediment 

interfaces, and bottom basement.  The problem formulation and equations developed in 

this article are general enough to consider range-dependent waveguides with complicated 

stratification and both large-scale (much larger than acoustic wavelength) interface 

deformations and small-scale (comparable with the wavelength) roughness. The large-

scale features are treated deterministically, as spatial bathymetry changes, and are 
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included in background or unperturbed environment, while the small-scale roughness is 

considered stochastically, as small random deformations superimposed on bathymetry 

and described by their local spectra. In this part, the model considered in this paper 

follows a two-scale approach used in many works on scattering from rough interfaces, 

see e.g. [4], [5], and discussion therein.  

The results obtained in this paper are suggested to improve modeling and analysis 

of scattering in complicated environments, such as heterogeneous waveguides with rough 

interfaces, and particularly to better understand issues appearing in modeling of long-

range reverberation. In particular, this can enhance existing models, such as 

UMPE/PEREV, the University of Miami PE (UMPE) model incorporating Tappert’s PE 

Reverberation (PEREV) model, described in [3]. Results described in this paper are 

consistent with those given in [3], cast them as a particular case, and consider more 

general case of an arbitrary number of interfaces, including sea-surface and those buried 

in the sediment.  

The paper is organized as follows. Section 2 gives formulation of the problem in 

terms of general (unified volume and roughness) perturbations, and provides general 

equations for the scattered field used in further analysis. In Sec.3, the problem is 

specified for the case of roughness perturbations and gives a general result. In Sec.4, a 

first-order solution is described, which allows simplification obtained general equations 

for various types of interfaces and comparing results with existing models. In Sec.5, a 

long-range approximation is described for scattering field, for various types of interfaces. 

Section 6 provides formulas for average reverberation intensity. Results are summarized 

in Section 7.  
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II. VOLUME PERTURBATIONS: RECIPROCITY THEOREM AND 

INTEGRAL EQUATION  

A. Definitions and notations 

Consider a heterogeneous fluid medium with spatially varying compressibility 

and density, )(rκ  and )(rρ , respectively, with r  being position vector. The spectral 

component of acoustic pressure field radiated by a point source located in position A , at 

frequency ω , obeys equation 

),()()()(
)(

1 2 Arrrr
r

δκω
ρ

Qpp AA =+







∇⋅∇     (1) 

and the boundary conditions, continuity for pressure and for the normal component of the 

particle velocity at all interfaces. Factor Q  is introduced here as a source strength factor, 

whose independence from position will be commented later on.  

Pressure field is related with Green’s function, which has unit field at unit 

distance, as follows   

),()( Arr GDp AA =       (2) 

π
ρ
4

)(AQDA −=      (3) 

so that for pressure field near the source we have   

Ar
Ar

Ar →
−

−= ,
||4

)()(
π
ρQpA    (4) 

Then, using the equation for particle velocity, pt −∇=∂ vρ , one obtains 

υωυπ ivQQ tntA −=∂=∂−== 2||4 rr    (5) 
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with υ  being the source volume injection rate defined as the normal velocity on the 

spherical surface of small radius surrounding the source integrated over this surface.  

The solution of (1), )(rAp , will be called here unperturbed pressure, or the 

reference solution of the problem for the reference state of the medium, defined by its 

parameters )(rκ  and )(rρ . This reference solution now will be compared with one, 

obtained for another state of the medium, called perturbed one, with parameters )(~ rκ  

and )(~ rρ , and for the same source, but located in different position B . “Same” source 

here means “equivalent” one as defined in [6], i.e. with the same υ , and therefore same  

Q ,  which, along with following discussion of reciprocity, explains the choice of this 

parameter as a source position-independent strength factor.  

   

B. Reciprocity and integral equations 

Pressure field for perturbed state of the medium, or perturbed pressure, 

obeys equation 

),()(~)(~)(~
)(~

1 2 Brrrr
r

δκω
ρ

Qpp BB =+







∇⋅∇    (6) 

Its relationship with unperturbed field can be obtained using following procedure [7-9].  

Multiply (1) by Bp~ , subtract (6) multiplied by Ap , and integrate the result over a volume 

V, which contains both positions of the source, A and B, and all the interfaces. Take into 

account that  
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ABBAAB

BAAB

pppppp

pppp

∇⋅∇







−−








∇−∇⋅∇

=
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∇⋅∇

~
~
11~

~
11~

~
~
11~

ρρρρ

ρρ
   (7) 

For volume integration of the first term in right side of (7), use Gauss’ theorem, 

∫∫ ⋅=⋅∇
VSV

dV dSFF , where the surface VS includes both sides of each interface, so the 

sum of integrals over the two sides vanishes due to boundary conditions. Then only 

volume integral over the last term in (7) remains, resulting in an equation 

( ) rdpppp
Q

pp
V

BABAAB
32 ~

~
11~~1)()(~ ∫ 








∇⋅∇








−−−=−
ρρ

κκωBA   (8) 

Equation (8) is exact and referred here as the reciprocity equation. It generates the 

two-fold consequence. First, conventional reciprocity is automatically manifested by 

equation (8) in the trivial case where the two states of the medium are acoustically 

equivalent, i.e. have equal acoustic parameters, which, with the integral in (8) vanished, 

results in  

 )(~)(~),()( BABA ABAB pppp ==      (9) 

Another consequence appears as an integral equation for the field in perturbed medium, 

which follows from (8) with first of the reciprocity relations in (9) taken into account   

( ) rdppp
Q

pp
V

BAABB
32 ~1

~
1~1)()(~ ∫ 








∇⋅∇








−−−−=
ρρ

κκωAA   (10) 

The integral equation (10) is exact and provides a relationship between volume 

perturbations of the medium and the field change they cause.  
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If the unperturbed (or reference) medium is taken to be such that analytic or 

numerical solution for the reference field is known or can be easier obtained, e.g. a 

layered medium with homogeneous layers and smooth enough interfaces, then an 

approximate solution of (10) can be obtained by iterations in the form of multiple 

scattering series, see [1] and Appendix A therein. If volume perturbations of the medium 

are small, the field perturbation, )()(~),( AABA BB ppu −= , can be approximated as a 

single-scattered field 

( ) rdpppp
Q

ppu
V

BABABB
32 1

~
1~1)()(~),( ∫ 








∇⋅∇








−−−−≈−=
ρρ

κκωAABA  (11) 

which is linear with respect to medium perturbations, and called Born approximation. 

 

III. ROUGH INTERFACES 

A. Definitions and general result 

Following a unified approach to volume and roughness scattering [1], roughness 

can be treated as a form of volume (spatial) perturbations caused by deformation of a 

reference (or unperturbed) interface. The reference interface is assumed to be smooth 

enough, so that analytic or numerical solution for the unperturbed field in the vicinity of 

this interface is known. 

Relationship between the reference interface, S , and the deformed (perturbed) 

interface S~ , can be given by their vertical elevation functions as follows  

)(~:~
)(:

R

R

hzS

hzS

=

=
     (12) 
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The space between S~  and S  specifies volume V in (10), where volume perturbations 

appear to be of non-zero values. Within this volume, the differences of parameters, κκ −~  

and 11~ −− − ρρ , have different sign above and below the reference interface, which 

however is compensated by changing sign of the integral over z due to general relation 

∫∫ −=
h

h

h

h

dzdz
~

~

[...][...] .  

Let acoustic parameters be specified by indexes 1 and 2 for the medium above 

and below the interface, respectively.  Then equation (10) becomes of the form 

( )∫∫ 







∇⋅∇








−−−−=

)(~

)( 12
12

22 ~11~1)()(~
R

R

AA
h

h
BABABB dzppppRd

Q
pp

ρρ
κκω  (13) 

Equation (13) is exact and generalizes the result given in [1], where it was developed for 

a horizontal flat reference interface and using slightly different notations.  

 

B. Small roughness 

To derive an integral equation for the case of small roughness, it is important to 

note several properties of the integrand in equation (13). First, it is independent of the 

angular orientation of the coordinate system. Secondly, the deformation of interface, 

which defines the volume of integration in (13), keeps unchanged the product of 

perturbed and unperturbed parameters within this volume, e.g. 21
~ ρρρρ = . Then for the 

integrand within the volume we have  









∂








∂+∇⋅∇

=∂∂+∇⋅∇=∂∂+∇⋅∇
=∇⋅∇

BnAnBtAt

BnAnBtAtBzAzBRAR

BA

pppp

pppppppp
pp

~
~
11~

~~~~
~

21 ρρ
ρρ

  (14) 
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where ∇⋅=∂ nn  and nt ∂−∇=∇ n  denote normal derivative and tangent gradient, with 

( )21)1,( hh ∇+−∇=n being unit normal vector at the reference interface. Boundary 

conditions applied to (14) ensure the continuity of integrand in (13) at the interfaces. In 

the case of small roughness, using this continuity, one obtains  

( )∫
=









∇⋅∇








−−−−= Rdpppp

Q
pp

hz

BABABB
2

)(12
12

2 ~11~)(1)()(~
R

RAA
ρρ

κκωζ   (15) 

where  )()(~)( RRR hh −=ζ  is the roughness perturbation function. Note that this 

function is defined in vertical direction, and all the integrand is defined in the coordinate 

system which does not change along the reference interface. If observation point 

approaches the reference interface, equation (15) becomes an integral equation for the 

field at this interface. 

   

IV. FIRST-ORDER APPROXIMATION 

A. General result 

First-order solution can be obtained from (15) using (14) where not only 

perturbed field, but also perturbed normal component of particle velocity is replaced by 

their unperturbed values (see also, for more comments, Appendix B in [1]), i.e.  

( ) ( ) )()(~
RR hzBASBA ppTpp ==≈     (16) 

( )
)(

21
11)(~

R

R
hz

BnAnBtAtSBA ppppJpp
=

















∂








∂+∇⋅∇=≈∇⋅∇

ρρ
ρρ  (17) 

This results in following equations  

∫= Rdu AB
2)()(),( RRBA φζ      (18) 

 



Distribution A: Approved for Public Release, Distribution Unlimited 
A. Ivakin: Scattering in range-dependent waveguides  

 11 

( ) )(11)()(
12

12
2 RRR JTQ AB 








−−−=−
ρρ

κκωφ    (19) 

Because all terms in (17) are continuous and can be taken at either side of the interface, 

we will be using different combinations of the two sides, so that the chosen combination 

would either allow simplifying the form of equation or help to show connection with 

known results obtained for different particular cases. For instance, taking normal 

derivatives of the fields Ap  and Bp  in (17) at different sides, one obtains  

( )
00000  hzBhzAhzBnhzAnhzBtAt ppppppJ

=±==±=±= ∇⋅∇=∂∂+∇⋅∇=   (20) 

This expression will be used later to consider scattering from “weak” sediment interfaces. 

In some other cases, e.g. at the oceanic waveguide boundaries, sea-surface and bottom 

basement, using one-side boundary conditions may be preferable.   

 

B. Ideal boundaries 

Suppose S  is a hard interface with Neumann boundary conditions 0, =∂
SBAn p . 

Then from (19) and (20) we have  

[ ] 0
2
11 )()( +=∇⋅∇−= hzBtAtBAAB ppppkSSQ φρ    (21) 

where  2/1
111 )( ρκω=k  is the wave number in the medium above the interface, and it is 

assumed that 12 κκ << , and 12 ρρ >> .  

The expression for the field scattered from rough soft surface, e.g. sea-surface, 

can be obtained directly from (19) with Dirichlet boundary conditions 0, =
SBAp . In this 

case, assuming that 12 ρρ << , one obtains   

[ ] 01 )()( +=∂∂= hzBnAnAB ppSSQ φρ     (22) 
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C. Arbitrary number of rough interfaces 

Consider a general case of an arbitrary number of rough interfaces, i.e. ∑=
j

jSS

with functions )(Sjζ defined at each interface jS . Then, generalizing equation (18), we 

have  

),(),( BABA ∑=
j

juu                                        (23) 

∫= Rdu j
ABjj

2)( )()(),( RRBA φζ     (24) 

j
jj

j
jjj

AB JTkQ 









−−







 −
=−

+

+

ρ
ρ

ρ
ρ

κ
κκ

φρ 0

1

0

0

12
0

)(
0    (25) 

jS
BnAnjjBtAtj ppppJ 















∂








∂+∇⋅∇= + ρρ

ρρ 11
1    (26) 

( )
jSBAj ppT =)(R      (27) 

where 00 / ck ω= , 0c , 0κ , and 0ρ  are introduced as some space-independent values, 

which can be chosen as typical for the environment of interest, for wave number, sound 

speed, compressibility and density, respectively. 

 

D. Plane waves in plane-layered reference medium 

As an example, consider the case of plane waves in plane-layered medium with 

multiple flat interfaces jj zzS =: . In this case, solution for background field can be given 

in separable variables  

 ( )RKr ⋅= BABABA izp ,,, exp)()( ψ     (28) 
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Then one obtains  

j
j

B
j

A
jjBA

jj

jjj
AB TYY
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 −
=− +

+

+ )()(
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1
2
0

0

1

0

0

1

0

2
0)(

ρ
ρρ

ρ
ρ

ρ
ρ

κ
κκ

ρ
φ KK

 (29) 

jSBA

BAzj
BA k

Y 






 ∂
=

,0

,0)(
, ψρ

ψρ
     (30) 

It is easy to see that this result is consistent with obtained in [10] and described in more 

detail in [1] first-order perturbation solution for the case considered. 

 

V. LONG-RANGE APPROXIMATION 

A. General comments 

In this section, we show that some of general formulas given in previous sections 

can be significantly simplified using assumptions relevant to long-range propagation 

scenarios. In particular, equations (25-27) can be cast as a more simple relationship 

jj
j

AB T
Q
kS Γ−=

0

2
0)( 2)(
ρ

φ      (31) 

with jΓ  introduced as a slowly range-dependent factor, or bi-static “contrast parameter” 

defined at each interface. In following subsections, using relevant approximations for a 

number of different environmental scenarios, close forms for this factor are obtained and 

briefly discussed. 

 

B. Preferable direction (small-angle approximation) 

Consider a long-range propagation scenario, where approximations of PE-type for 

the propagation field can be applied as follows 
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 ( )ReRr ⋅= BABABA ikzp ,0,, exp),(~)( ψ     (32) 

where 0k  is a reference wavenumber, 
BA

BA
BA

,

,
, )(

RR
RR

Re
−
−

=  is a unit vector defining 

azimuthal direction from source (B) and receiver (A) to scattering point (r ), and it is 

assumed that wave numbers in the sediment are approximately equal to that in water near 

the sediment, and wkk ≈0 . Assume also that slopes of reference interfaces are small. In 

this case, directions of all waves propagated in the sediment are nearly horizontal, so that 

normal derivatives in (26) can be neglected, while for tangent derivatives following 

approximation can be applied  

BABABAt pikp ,,0, e≈∇      (33) 

Then equation (25) becomes of the form (31) with 

BA
jj

jj
j ee ⋅










−+







 −
=Γ

+

+

ρ
ρ

ρ
ρ

κ
κκ 0

1

0

0

12     (34) 

A similar “contrast parameter” was introduced by F.Tappert for the case of first (water-

sediment) interface, see [3], with 1Γ=Γb . Equation (34) therefore consistent with 

Tappert’s result, generalizes it for the case of multiple interfaces, and is referenced here 

as Tappert’s approximation.  

 

C. “Weak” sediment interfaces 

Here we consider a possibility to take into account vertical derivatives in (26) 

using an approximation somewhat similar to (32), assuming that waves above and below 

the interface propagate in close directions but not necessarily horizontally. Instead of 

(32), we have now  
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jj hzBABAjhzBA pikp =
+

+= ≈∇ )()()( ,,0, rrer     (35) 

jj hzBABAjhzBA pikp =
−

+−= ≈∇ )()()( ,,10, rrer    (36) 

where −+
BA,e  are unit vectors defined by directions of waves above and below interface 

from source and receiver to scattering point. Using boundary conditions in (20), we now 

obtain 
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   (37) 

where 1, +jjm and 1, +jjn  are introduced as density sediment/water ratio and refraction index 

in the sediment above and below the j-th interface, and −+−+ ⋅=⋅= ABBAj eeeeϑcos . For the 

case of backscattering, where 0=jϑ , equation (37) is given recently in [11]. It can be 

easily seen that equation (37) gives (34) in particular case of first (water/sediment) 

interface, if same other assumptions used in derivation of (34) are applied. 

 

D. Basement interfaces 

At the basement, a similar to (32) relation can be applied for horizontal 

derivatives, while vertical derivatives can be estimated assuming that only outgoing 

waves exist below the basement. In this case, taking into account boundary conditions, 

we have following approximations  

0,,0, )()()( +=+= ≈∇
NN hzBABANhzBAR pikp rRer    (38) 
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resulting in the expression for rough sediment basement as follows   
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In particular case with 1=N , where there is only water-basement interface, equation (40) 

results in  

( ) ( )2/cos112112 22
21 ϑ








−+−=Γ

b
b

b m
n

m
    (41) 

where  12 / mmmb =  and 12 / nnnb = . It is interesting to compare this expression with 

Tappert’s approximation. Noting that (34) can be presented in the form  

( ) ( )2/cos112112 22 ϑ







−+−=Γ

b
b

b
b m

n
m

    (42) 

it can be seen that (41) may provide a noticeable correction to Tappert’s approximation 

given here by (42), if refraction indexes and densities of the bottom and water are 

different. 

 

E. How to include rough sea-surface 

It is easy to see that (22) is consistent with the expressions for the basement (41) 

and boundary conditions (39), that is sea-surface can be considered as a particular case of 

the basement with a very small basement/water density ratio.  
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 Another way to include rough sea-surface results from approximating the vertical 

derivatives in (22) by a simple estimate dpp dzzzBAzzBAz SS
/)()(

0,, +=== ≈∂ rr , which 

provides following result for “effective contrast parameter” at a slightly shifted sea-

surface defined as follows  

2/)(,: 2
000

−=Γ+= dkdzzS wS       (43) 

Therefore, the scattered field in the oceanic waveguide with multiple rough 

interfaces can be presented uniformly for all interfaces, including sea surface, as a sum of 

fields scattered from different interfaces, NjS j ,...,0, = , using equations (23,24) and 

(31) with contrast parameters jΓ  defined by equations (37), (40) or (41), and (43).  

 

VI. LONG-RANGE REVERBERATION INTENSITY 

From results given in previous sections for the scattered field, the average 

scattering intensity can be calculated as follows. Using equation (23) results in  

∑∑
= =

=
N

j

N

n
nj uuI

1 1

2
),(*),( BABA     (44) 

where <…> denotes average over ensemble of small-scale roughness. Using (24), (31), 

and (3), one obtains  

∑∫∫ ΦΓΓ=
nj

jnnjjn qdRdgkDI
,

224
0

2
0 ),()(*)(),(|| qRRRqR    (45) 

where ( ) 0000 /)(/)(4 ρρρρρπ AB BA DDQD ==−= , jnΦ  is the local roughness cross-

spectrum of j-th and n-th interfaces 

∫ ⋅−+=Φ − adinjjn
22 )exp()2/()2/()2(),( aqaRaRqR ζζπ   (46) 
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and jng  is a spatial Wigner-Ville distribution of normalized two-way propagation 

functions for these two interfaces 

adiPPg njjn
22 )exp()2/(*)2/()2(),( aqaRaRqR ⋅−+= ∫−π  (47) 

[ ]
jSBAjj GGDDTP ),(),()()()( BrArRR ==    (48) 

Here we consider the case where there is no cross-correlation between roughness 

of different interfaces, which gives jjnjn Φ=Φ δ , with jnδ  being Kronecker delta. We 

assume also for simplicity that small-angle approximation (32) for propagation field is 

applicable. In this case, ),( qRjjg has a sharp local maximum, which can be 

approximated as follows  

 
2

)()(),( RqqqR jSjj Pg −≈ δ     (48)  

with )()()( 00 ReReRq BAS kk +≈  being local scattering Bragg vector. Then, taking into 

account (2), we have [ ]
jSBAj GGDDT ),(),()( BrArR = , which results in an expression 

∑∫
=

=
N

j
jj RdMPDI

1

222
0 )()(|| RR     (49) 

where jM  is introduced as the local scattering coefficient of j-th interface  

),()(
4
1)(

24
Sjjwj kM qRRR ΦΓ=      (50) 

defined by a local spectrum of roughness and local contrast of acoustic parameters which 

may vary along this interface, and factor 
2

jP describes the full-field intensity ensonifying 

this interface which may also vary significantly because of complicated effects of two-

way propagation in the waveguide from source to scattering area and then to receiver, 
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including effects of focusing and defocusing due to diffraction on large-scale variations 

of interfaces, 3D-refraction in water column and in the sediment, and others.  

 

VII.  SUMMARY AND CONCLUSIONS 

This paper develops from first principles a unified perturbation approach to 

scattering in fluid media with volume heterogeneity and rough interfaces. A general 

reciprocity equation is used to derive an exact integral equation for the perturbation of 

pressure field caused by spatial perturbations of acoustic parameters of the medium, 

compressibility and density. An approximate solution can be obtained by iterations of the 

integral equation, with first iteration being the sum of the zeroth-order pressure field 

(unperturbed or reference one) and the first-order field (or Born approximation for 

scattered pressure).  

Roughness of interfaces is treated as a form of volume perturbations caused by 

small-scale (comparable with the wavelength) deformation of a reference interface 

assumed to be much smoother to provide the reference field for the environment of 

interest. The first-order solution for pressure field is obtained for the general case with an 

arbitrary number of rough interfaces, various environmental scenarios and different types 

of interfaces, sea-surface, water-sediment interface, buried sediment interfaces, and 

bottom basement. Ideal interfaces, with Dirichlet and Neumann boundary conditions 

respectively, are shown to be particular cases of general results as well.  

Average reverberation intensity is considered and a general result for an arbitrary 

number of rough interfaces is expressed through a matrix of roughness cross-spectra. For 

the case where there is no cross-correlation between roughness of different interfaces, the 
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paper provides the direct relationship of reverberation with three critical characteristics 

defined at each interface: (1) local spectra of roughness, (2) local contrast of acoustic 

parameters, and (3) two-way transmission intensity of the reference field. The main 

physical implication is clear and general: the strongest returns will come from areas that 

are strongly ensonified, have greater interface contrasts of acoustic parameters, and larger 

roughness spectrum component at corresponding Bragg wave numbers, which confirms 

main conclusions made in previous work on full-field analysis of long-range 

reverberation, such as described in [3], and generalizes them to other environmental 

scenarios.  

Note that the approach developed in this paper does not require Monte-Carlo 

simulations of the scattered field be used for analysis of average reverberation intensity. 

Also, the approach does not involve the concept of conventional scattering strength 

which requires extracting incident and scattered waves from full propagation fields and 

specifying their grazing angles at each interface, which is not always possible. This 

complication appears e.g. in the case, where grazing angles and interface slopes are both 

small and comparable to each other, i.e. in usual long-range propagation scenarios, where 

therefore full-field modeling approaches are required, such as the one developed in this 

paper. Besides, the approach provides the expressions for long-range reverberation in a 

simple form which includes only propagation intensity, i.e., neither the phases nor spatial 

derivatives of propagation field are needed to be accounted in the propagation model. 

These may provide a base for developing new algorithms for extremely fast calculations 

of reverberation in complicated range-dependent environments.  
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